Xilinx FPGA 开发平台 用户手册

AXKU3 开发板

文档版本控制

文档版本	修改内容记录
REV1.0	创建文档
REV1.1	更新 J1、J2 连接器位置表述错误
REV1.2	更新简介 DDR4 数量表述错误,新增 EEPROM、温度感应器部分

目 录

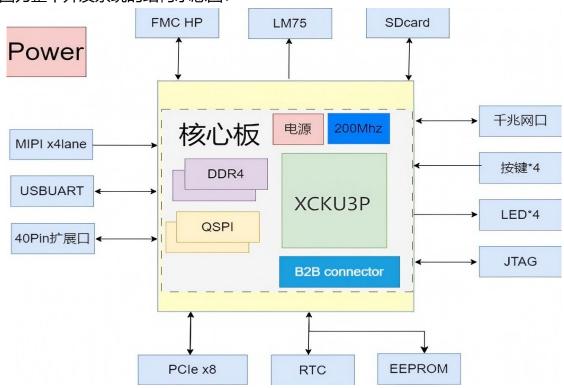
又档	1版本控	制	.2
—、	开发	支板简介	.5
_、	ACI	KU3 核心板	.6
	(—)	简介	.6
	(<u></u>	FPGA 芯片	.7
	(三)	DDR4	.9
	(四)	QSPI Flash1	2
	(五)	时钟配置1	3
	$(\overleftarrow{\wedge})$	LED 灯1	5
	(七)	电源1	6
	(八)	结构图1	8
	(九)	连接器管脚定义1	8
三、	扩展	琴板2	27
	(—)	简介2	27
	(<u></u>)	PCIe 插槽	27
	(三)	干兆网接口2	29
	(四)	FMCHPC 接口3	3 1
	(五)	MIPI 接口	35
	$(\overleftarrow{\wedge})$	USB 转串口3	37
	(七)	SD 卡槽3	37
	(八)	40 针扩展口3	8
	(九)	时钟配置3	39
	(十)	EEPROM4	11
	(+-)	温度传感器	11
	(十二)	按键和 LED 灯	12
	(十三)	JTAG 调试口	ŀ3
	(十四)	电源4	4
	(十五)	结构尺寸图4	ŀ6

芯驿电子科技(上海)有限公司基于 Xilinx FPGA Kintex Ultrascale+开发平台的开发板(型号: AXKU3)正式发布了,为了让您对此开发平台可以快速了解,我们编写了此用户手册。

这款 Kintex Ultrascale + FPGA 开发平台采用核心板加扩展板的模式, 方便用户对核心板的二次开发利用。核心板使用 Xilinx 的 Kintex Ultrascale + 芯片 XCKU3PFFVB676 的解决方案, 挂载了 2 片 1GB 的高速 DDR4 SDRAM 芯片和 2 片 256Mb 的 QSPI FLASH 芯片。

在底板设计上我们为用户扩展了丰富的外围接口,比如 1 个 PCle3.0x8 接口、1 路 FMC HPC 接口、1 路干兆网接口、1 路 MIPI 输入接口、1 路 UART 串口接口、1 路 SD 卡接口、1 个 40 针扩展接口等等。可满足用户各种高速数据交换,视频传输处理以及工业控制的要求,是一款"专业级"的 FPGA 开发平台。为高速数据传输和交换,数据处理的前期验证和后期应用提供了可能。相信这样的一款产品非常适合从事 FPGA 开发的学生、工程师等群体。

一、开发板简介


在这里,对这款 Kintex Ultrascale + AXKU3 开发平台进行简单的功能介绍。

开发板的整个结构,继承了我们一贯的核心板+扩展板的模式来设计的。核心板和扩展板 之间使用高速板间连接器连接。

核心板主要由 XCKU3PFFVB676 + 2个 DDR4 + QSPI FLASH 的最小系统构成。采用 Xilinx 的 Kintex Ultrascale+系列的芯片,型号为 XCKU3PFFVB676。在 FPGA 芯片的 HP 端口上连接了 2片 DDR4 存储芯片,每片 DDR4 容量高达 1GB 字节,组成 32 位的数据带宽。2个 256Mb 的 QSPI FLASH 用来静态存储 FPGA 芯片的配置文件或者其它用户数据。

底板为核心板扩展了丰富的外围接口,其中包含 1 个 PCle3.0x8 接口、1 路 FMC HPC接口、1 路干兆网接口、1 路 MIPI 输入接口、1 路 UART 串口接口、1 路 SD 卡接口、1 个40 针扩展接口、一些按键及 LED。

下图为整个开发系统的结构示意图:

通过这个示意图,我们可以看到,我们这个开发平台所能含有的接口和功能。

FPGA 核心板

由 XCKU3P + 2 个 DDR4 + 2 个 QSPI FLASH 的最小系统组成,另外有两个晶振提供时钟,2 个 200MHz 晶振提供为 FPGA 逻辑和 DDR 控制参考时钟。

● PCle3.0 x8 接口

支持 PCI Express 3.0 标准,提供标准的 PCIe x8 高速数据传输接口,单通道通信速率可

高达 8GBaud。

● 1路 FMC HPC 接口

FPGA 中的 8 路高速收发器连接到 FMC HPC 专用的高速管脚上,引出 FMC 的 34 对 LA 信号差分对和 2 对时钟信号,可满足高速信号传输要求,符合 FMC 标准,可以各种 FMC 模块 (HDMI 输入输出模块,高速 AD 模块等等)。

● 1路干兆网接口

干兆以太网接口芯片采用 JL2121D 以太网 PHY 芯片为用户提供网络通信服务。芯片支持 10/100/1000 Mbps 网络传输速率;全双工和自适应。

1路 MIPI 输入接口

板载 1 路 MIPI lanex4 输入接口,最高速率支持 2.5Gb/s,用于连接 MIPI 摄像头模块。

● USB Uart 接口

1 路 Uart 转 USB 接口,用于和电脑通信,方便用户调试。串口芯片采用 Silicon Labs CP2102GM 的 USB-UART 芯片, USB 接口采用 MINI USB 接口。

● Micro SD 卡座

1路 Micro SD 卡座,用于存储操作系统镜像和文件系统。

● 40 针扩展口

1 个 40 针 2.54mm 间距的扩展口,可以外接黑金的各种模块(双目摄像头,TFT LCD 屏,高速 AD 模块等等)。扩展口包含 5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。

● JTAG 调试口

1个10针2.54mm标准的JTAG口,用于FPGA程序的下载和调试,用户可以通过XILINX下载器对FPGA系统进行调试和下载。

● LED灯

10 个发光二极管 LED,核心板上 3 个,底板上 7 个。核心板上 1 个电源指示灯、1 个 DONE配置指示灯和用户指示灯。底板上有 1 个电源指示灯、4 个用户指示灯和 2 个串口指示灯。

● 按键

底板上4个用户按键。

二、 ACKU3 核心板

(一) 简介

ACKU3(**核心板型号,下同**)核心板,FPGA 芯片是基于 Xilinx FPGA Kintex Ultrascale+的主芯片 XCKU3P-2FFVB676I 设计。核心板在 FPGA 的 HP 端口上连接了 2 片 DDR4 存储芯片组成 32 位的数据带宽,每片 DDR4 容量高达 1GB。HP 端的内存带宽高达 85Gb/s。另

外核心板上也集成了 2 片 256MBit 大小的 QSPI FLASH, 用于启动存储配置和系统文件。

这款核心板的采用个板对板连接器扩展出了 179 个 IO, 引出的 IO 的电平可以通过更换底板上的 LDO 芯片来修改,满足用户不用电平接口的要求;另外核心板也扩展出了 16 对高速收发器接口。对于需要大量 IO 的用户,此核心板将是不错的选择。而且 IO 连接部分, FPGA芯片到接口之间走线做了等长和差分处理,并且核心板尺寸仅为 80*60 (mm),对于二次开发来说,非常适合。

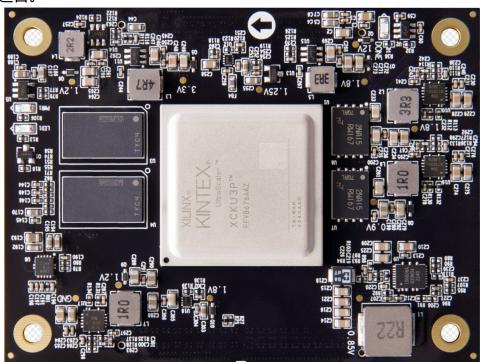


图 2-1-1 ACKU3 核心板正面图

(二) FPGA 芯片

前面已经介绍过了,我们所使用的 FPGA 型号为 **XCKU3P-2FFVB676I**,属于 Xilinx 公司 Kintex Ultrascale+系列的产品,速度等级为 2,温度等级为工业级。此型号为 FFVB676 封装,676 个引脚。Xilinx Kintex Ultrascale+ FPGA 的芯片命名规则如下:

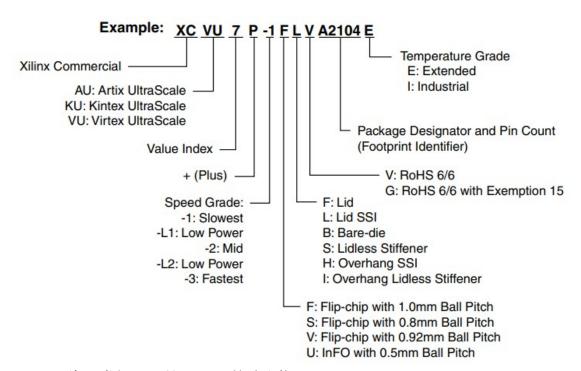


图 2-2-1 为开发板所用的 FPGA 芯片实物图。

图 2-2-1 FPGA 芯片实物

其中 FPGA 芯片的主要参数如下所示:

名称	具体参数
Logic Cells	356K
触发器(FF)	325,440
LUTs	162,720
Total Block RAM	12.7Mb
DSP Slices	1368
CMTs	4
GTY/Gb/s	16/28.21
PCle Gen3 x16	1
速度等级	-2

温度等级	工业级
------	-----

(**三**) DDR4

ACKU3 开发板上配有2片 Micron(美光)的1GB的DDR4芯片,型号为MT40A512M16LY-062E,连接在FPGA的HP端,组成32位数据总线带宽和2GB的容量。DDR4SDRAM的在FPGA端的最高运行数据速率2666Mbps,2片DDR4存储系统直接连接到了BANK 66、R67的存储器接口上。DDR4 SDRAM的具体配置如下表2-3-1所示。

表 2-3-1 DDR4 SDRAM 配置

位号 芯片型号		容量	厂家
U3、U4	MT40A512M16LY-062E	512Mx 16bit	Micron

DDR4 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制,保证 DDR4 的高速稳定的工作。

FPGA 端的 DDR4 的硬件连接方式如图 2-3-1 所示:

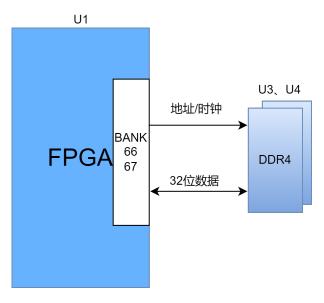


图2-3-1 DDR4 DRAM原理图部分

图 2-3-2 为开发板的 2 片 DDR4 DRAM 实物图

DDR4 SDRAM 引脚分配:

信号名称	引脚号
DDR4_D0	C16
DDR4_D1	G16
DDR4_D2	D15
DDR4_D3	G17
DDR4_D4	H17
DDR4_D5	H16
DDR4_D6	D16
DDR4_D7	E15
DDR4_D8	B19
DDR4_D9	C17
DDR4_D10	B20
DDR4_D11	B15
DDR4_D12	A19
DDR4_D13	A15
DDR4_D14	A20
DDR4_D15	B17
DDR4_D16	G20
DDR4_D17	D19

DDR4_D18	D20
DDR4_D19	F19
DDR4_D20	G21
DDR4_D21	E18
DDR4_D22	D18
DDR4_D23	F18
DDR4_D24	C23
DDR4_D25	C22
DDR4_D26	A24
DDR4_D27	B22
DDR4_D28	A25
DDR4_D29	D21
DDR4_D30	B24
DDR4_D31	E21
DDR4_DM0	G15
DDR4_DM1	C18
DDR4_DM2	H18
DDR4_DM3	A22
DDR4_DQS0_N	E17
DDR4_DQS0_P	E16
DDR4_DQS1_N	A18
DDR4_DQS1_P	A17
DDR4_DQS2_N	E20
DDR4_DQS2_P	F20
DDR4_DQS3_N	B21
DDR4_DQS3_P	C21
DDR4_A0	D26
DDR4_A1	D25
DDR4_A2	E26
DDR4_A3	C24
DDR4_A4	C26
DDR4_A5	F24
DDR4_A6	M26
DDR4_A7	B25
DDR4_A8	G26
-	

DDR4_A9	B26
DDR4_A10	E25
DDR4_A11	H26
DDR4_A12	D23
DDR4_A13	F25
DDR4_ACT_B	J26
DDR4_BA0	M25
DDR4_BA1	F23
DDR4_BG0	K26
DDR4_CAS_B	E23
DDR4_CKE	L24
DDR4_CLK_N	G25
DDR4_CLK_P	G24
DDR4_CS_B	D24
DDR4_OTD	H24
DDR4_PAR	J25
DDR4_RAS_B	F22
DDR4_RST	L25
DDR4_WE_B	K25

(四) QSPI Flash

核心板配有 2 片 256MBit 大小的 Quad-SPI FLASH 芯片, 型号为 MT25QU256ABA1EW9,它使用 1.8V CMOS 电压标准。由于 QSPI FLASH 的非易失特性,在使用中,它可以存储 FPGA 的配置 Bin 文件以及其它的用户数据文件。QSPI FLASH 的具体型号和相关参数见表 2-4-1。

表2-4-1 QSPI Flash的型号和参数

位号		芯片类型	容量	厂家
	U7、U8	MT25QU256ABA1EW9	256Mbit	Micron

QSPI FLASH 连接到 FPGA 芯片的的专用管脚上,其中时钟管脚连接到专用 BANKO 的 CCLKO 上,数据管脚分别连接到 BANKO 和 BANK65 上。图 2-4-1 为 QSPI Flash 和 FPGA 芯片的连接示意图。

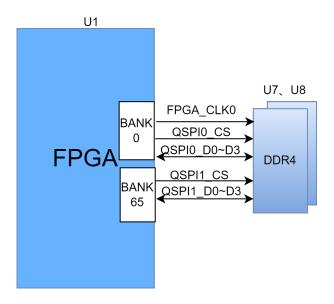


图 4-1 QSPI Flash 连接示意图

配置芯片引脚分配:

信号名称	FPGA 引脚号
QSPI_CLK	Y11
QSPIO_CS	AA12
QSPI0_DQ0	AD11
QSPI0_DQ1	AC12
QSPI0_DQ2	AC11
QSPI0_DQ3	AE11
QSPI1_CS	U22
QSPI1_DQ0	N23
QSPI1_DQ1	P23
QSPI1_DQ2	R20
QSPI1_DQ3	R21

(五) 时钟配置

核心板上为 FPGA 系统提供了 200Mhz 的 2 路差分有源时钟。分别为 FPGA 逻辑部分提供差分时钟源。时钟电路设计的示意图如下图 2-5-1 所示:

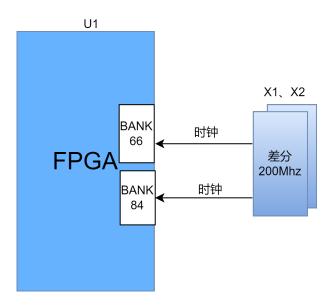
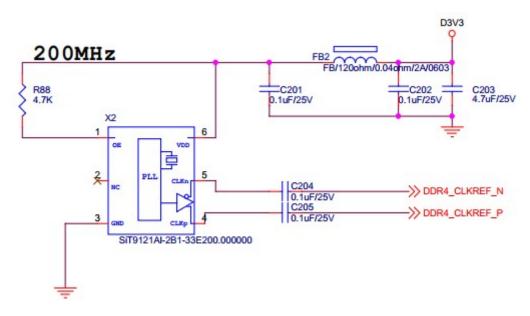



图 2-5-1 核心板时钟源

FPGA 系统时钟源

板上提供了 2 个 200MHz 差分晶振,可为 DDR4 控制器及 FPGA 逻辑提供参考时钟。晶振输出连接到 FPGA BANK66 和 BANK84 的全局时钟上,这个全局时钟可以用来驱动 FPGA 内的 DDR4 控制器和用户逻辑电路。该时钟源的原理图如图 2-5-2 所示

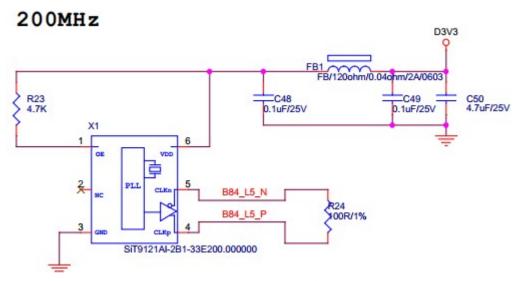


图 2-5-2 系统时钟源

时钟引脚分配:

信号名称	FPGA 引脚
B84_L5_P	AC13
B84_L5_N	AC14
DDR4_CLKREF_P	K22
DDR4_CLKREF_N	K23

(六) LED 灯

ACKU3 核心板上有 3 个红色 LED 灯,其中 1 个是电源指示灯(PWR1),1 个是配置 LED 灯(D1),还有一个用户指示灯(LED1)。核心上电时指示灯会亮起;当 FPGA 配置程序后,配置 LED 灯会亮起。用户指示灯可用于自定义功能指示。LED 灯硬件连接的示意图如图 2-6-1 所示:

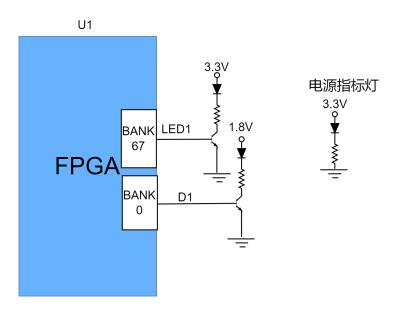


图 2-6-1 核心板 LED 灯硬件连接示意图

(七) 电源

ACKU3 核心板供电电压为+12V,通过连接底板供电。板上的电源设计示意图如下图 2-7-1 所示:

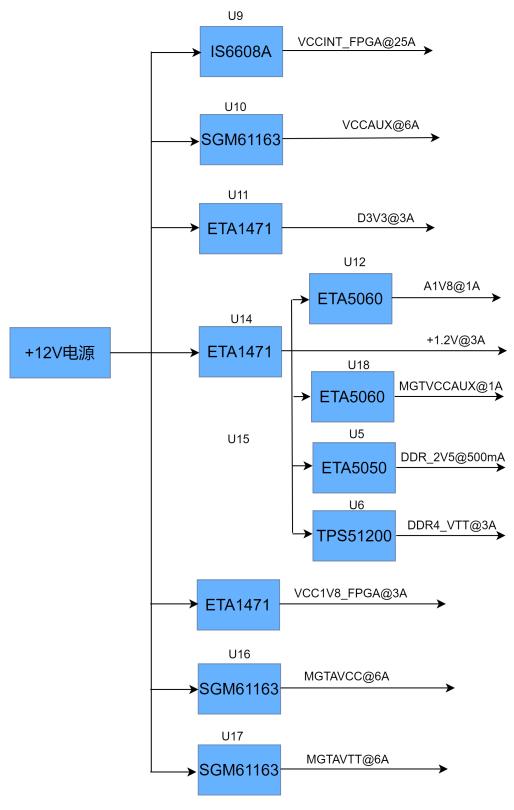


图 2-7-1 原理图中电源接口部分

+12V 通过 DCDC 电源芯片 IS6608 产生 FPGA 核心电源,输出电流高达 25A,可满足核心电压的电流需求。+12V 电源再通过 3 个 DCDC 芯片 SGM61163 来产生 VCCAUX,

MGTAVCC, MGTAVTT 电源, 给 FPGA 辅助电源和高速收发器供电。同时+12V 电源再通过 DCDC 芯片 ETA1471 来产生+1.2V, VCC1V8_FPGA、D3V3 电源给 DDR4、FPGA 的 BANK 及外设供电。另外 D3V3 通过 2 个 LDO 芯片 ETA5060 产生高速收发器的辅助电源和 FPGA 的 ADC 供电电源+1.8V; DDR4 的 VTT 和 DDR2V5 电压由 TPS51200 和 ETA5050 产生。

因为 FPGA 的电源有上电顺序的要求,在电路设计中,我们已经按照芯片的电源要求设计,保证芯片的正常工作。

(八) 结构图

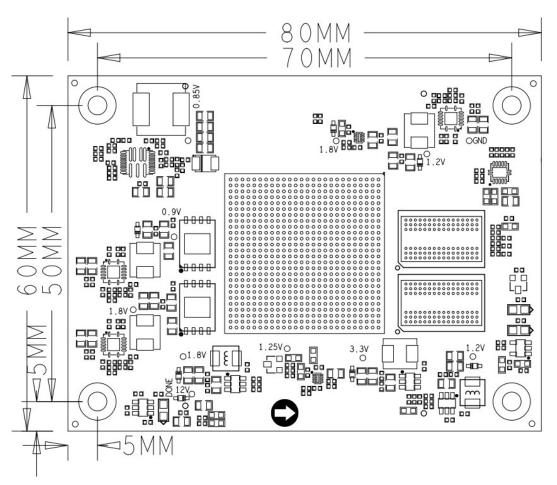


图 2-8-1 正面图 (Top View)

(九) 连接器管脚定义

核心板一共扩展出 2 个高速扩展口,使用 2 个 240Pin 的板间连接器 (J1~J2) 和底板连接,核心板供电由 J2 连接器输入。

J1 连接器的引脚分配

J1 管脚	信号名称	FPGA 引脚号	J1 管脚	信号名称	FPGA 引脚号
A1	POWER_ALT	-	B1	POWER_SDA	-
A2	-	-	B2	POWER_SCL	-
A3	GND	-	В3	GND	-
A4	FPGA_TDI	AB12	B4	FPGA_TCK	AE12
A5	FPGA_TMS	AB10	B5	FPGA_TDO	Y10
A6	GND	-	В6	GND	-
A7	-	-	В7	-	-
A8	-	-	В8	-	-
A9	GND	-	В9	GND	-
A10	-	-	B10	-	-
A11	-	-	B11	-	-
A12	GND	-	B12	GND	-
A13	B87_L3_N	G14	B13	B87_L4_N	J14
A14	B87_L3_P	H14	B14	B87_L4_P	J15
A15	GND	-	B15	GND	-
A16	B87_L2_N	H13	B16	B87_L1_N	H12
A17	B87_L2_P	J13	B17	B87_L1_P	J12
A18	GND	-	B18	GND	-
A19	B87_L5_N	F12	B19	B87_L6_N	F13
A20	B87_L5_P	G12	B20	B87_L6_P	F14
A21	GND	-	B21	GND	-
A22	B87_L7_N	E12	B22	B87_L8_N	D13
A23	B87_L7_P	E13	B23	B87_L8_P	D14
A24	GND	-	B24	GND	-
A25	B87_L10_N	B12	B25	B87_L11_N	A12
A26	B87_L10_P	C12	B26	B87_L11_P	A13
A27	GND	-	B27	GND	-
A28	B87_L9_N	C13	B28	B87_L12_N	A14

A29	B87 L9 P	C14	B29	B87_L12_P	B14
A30	GND	-	B30	GND	-
A31	GND	-	B31	GND	-
A32	MGT226 CLK0 P	P7	B32	MGT226_CLK1_P	M7
A33	MGT226 CLK0 N	P6	B33	MGT226 CLK1 N	M6
A34	GND	-	B34	GND	-
A35	MGT226_TX0_P	N5	B35	MGT226_RX0_P	M2
A36	MGT226_TX0_N	N4	B36	MGT226_RX0_N	M1
A37	GND	-	B37	GND	-
A38	MGT226_TX1_P	L5	B38	MGT226_RX1_P	K2
A39	MGT226_TX1_N	L4	B39	MGT226_RX1_N	K1
A40	GND	-	B40	GND	-
A41	MGT226_TX2_P	J5	B41	MGT226_RX2_P	H2
A42	MGT226_TX2_N	J4	B42	MGT226_RX2_N	H1
A43	GND	-	B43	GND	-
A44	MGT226_TX3_P	G5	B44	MGT226_RX3_P	F2
A45	MGT226_TX3_N	G4	B45	MGT226_RX3_N	F1
A46	GND	-	B46	GND	-
A47	MGT227_CLK1_P	H7	B47	MGT227_CLK0_P	K7
A48	MGT227_CLK1_N	Н6	B48	MGT227_CLK0_N	K6
A49	GND	-	B49	GND	-
A50	MGT227_TX0_P	F7	B50	MGT227_RX0_P	D2
A51	MGT227_TX0_N	F6	B51	MGT227_RX0_N	D1
A52	GND	-	B52	GND	-
A53	MGT227_TX1_P	E5	B53	MGT227_RX1_P	C4
A54	MGT227_TX1_N	E4	B54	MGT227_RX1_N	C3
A55	GND	-	B55	GND	-
A56	MGT227_TX2_P	D7	B56	MGT227_RX2_P	B2
A57	MGT227_TX2_N	D6	B57	MGT227_RX2_N	B1
A58	GND	-	B58	GND	-
A59	MGT227_TX3_P	В7	B59	MGT227_RX3_P	A4
A60	MGT227_TX3_N	В6	B60	MGT227_RX3_N	A3

J1 管	信号名称	FPGA 引脚	J1 管脚	信号名称	FPGA 引脚号
脚		号			
C1	MGT224_TX0_N	AF6	D1	MGT224_RX0_N	AF1
C2	MGT224_TX0_P	AF7	D2	MGT224_RX0_P	AF2
C3	GND	-	D3	GND	-
C4	MGT224_TX1_N	AE8	D4	MGT224_RX1_N	AE3
C5	MGT224_TX1_P	AE9	D5	MGT224_RX1_P	AE4
C6	GND	-	D6	GND	-
C 7	MGT224_TX2_N	AD6	D7	MGT224_RX2_N	AD1
C8	MGT224_TX2_P	AD7	D8	MGT224_RX2_P	AD2
C9	GND	-	D9	GND	-
C10	MGT224_TX3_N	AC4	D10	MGT224_RX3_N	AB1
C11	MGT224_TX3_P	AC5	D11	MGT224_RX3_P	AB2
C12	GND	-	D12	GND	-
C13	MGT224_CLK1_N	Y6	D13	MGT224_CLK0_N	AB6
C14	MGT224_CLK1_P	Y7	D14	MGT224_CLK0_P	AB7
C15	GND	-	D15	GND	-
C16	MGT225_TX0_N	AA4	D16	MGT225_RX0_N	Y1
C17	MGT225_TX0_P	AA5	D17	MGT225_RX0_P	Y2
C18	GND	-	D18	GND	-
C19	MGT225_TX1_N	W4	D19	MGT225_RX1_N	V1
C20	MGT225_TX1_P	W5	D20	MGT225_RX1_P	V2
C21	GND	-	D21	GND	-
C22	MGT225_TX2_N	U4	D22	MGT225_RX2_N	T1
C23	MGT225_TX2_P	U5	D23	MGT225_RX2_P	T2
C24	GND	-	D24	GND	-
C25	MGT225_TX3_N	R4	D25	MGT225_RX3_N	P1
C26	MGT225_TX3_P	R5	D26	MGT225_RX3_P	P2
C27	GND	-	D27	GND	-
C28	MGT225_CLK1_N	Т6	D28	MGT225_CLK0_N	V6
C29	MGT225_CLK1_P	T7	D29	MGT225_CLK0_P	V7

C30	GND	-	D30	GND	_
C31	GND	-	D31	GND	_
C32	-	-	D32	-	-
C33	-	-	D33	-	-
C34	GND	-	D34	GND	-
C35	_	-	D35	FPGA_VN_IN	R13
C36	-	-	D36	FPGA_VP_IN	P14
C37	GND	-	D37	GND	-
C38	GND	-	D38	GND	-
C39	B86_L2_N	J10	D39	B86_L4_N	G11
C40	B86_L2_P	J11	D40	B86_L4_P	H11
C41	GND	-	D41	GND	-
C42	B86_L3_N	H9	D42	B86_L1_N	К9
C43	B86_L3_P	J9	D43	B86_L1_P	K10
C44	GND	-	D44	GND	-
C45	B86_L9_N	C9	D45	B86_L5_N	G9
C46	B86_L9_P	D9	D46	B86_L5_P	G10
C47	GND	-	D47	GND	-
C48	B86_L6_N	F9	D48	B86_L10_N	A9
C49	B86_L6_P	F10	D49	B86_L10_P	В9
C50	GND	-	D50	GND	-
C51	B86_L7_N	E10	D51	B86_L8_N	D10
C52	B86_L7_P	E11	D52	B86_L8_P	D11
C53	GND	-	D53	GND	-
C54	B86_L11_N	A10	D54	B86_L12_N	B11
C55	B86_L11_P	B10	D55	B86_L12_P	C11
C56	GND	-	D56	GND	-
C57	-	-	D57	-	-
C58	-	-	D58	-	-
C59	-	-	D59	-	-
C60	-	-	D60	-	-

J2 连接器的引脚分配

J2 管脚	信号名称	FPGA 引脚号	J2 管脚	信号名称	FPGA 引脚号
A1	+12V	-	B1	+12V	-
A2	-	-	B2	-	-
A3	GND	-	В3	GND	-
A4	VCCIO_65	P22,U23,Y24	B4	VCCIO_64	AA21,AB18,AD22
A5	-	-	B5	-	-
A6	GND	-	В6	GND	-
A7	GND	-	В7	GND	-
A8	-	-	В8	-	-
A9	-	-	В9	-	-
A10	GND	-	B10	GND	-
A11	B84_L2_N	AF13	B11	B84_L1_N	AF15
A12	B84_L2_P	AE13	B12	B84_L1_P	AF14
A13	GND	-	B13	GND	-
A14	B84_L9_N	Y16	B14	B84_L6_N	AB16
A15	B84_L9_P	W16	B15	B84_L6_P	AB15
A16	GND	-	B16	GND	-
A17	B64_L7_N	AF22	B17	B64_L8_N	AE23
A18	B64_L7_P	AE22	B18	B64_L8_P	AD23
A19	GND	-	B19	GND	-
A20	B64_L3_N	AF25	B20	B64_T2U	AE18
A21	B64_L3_P	AF24	B21	B64_T1U	AF20
A22	GND	-	B22	GND	-
A23	B64_L1_N	AE26	B23	B64_L11_N	AE21
A24	B64_L1_P	AE25	B24	B64_L11_P	AD21
A25	GND	-	B25	GND	-
A26	B64_L4_N	AD26	B26	B64_L5_N	AD25
A27	B64_L4_P	AC26	B27	B64_L5_P	AD24
A28	GND	-	B28	GND	-
A29	B64_L6_N	AC24	B29	B64_L9_N	AC23

A30	B64_L6_P	AB24	B30	B64_L9_P	AC22
A31	GND	-	B31	GND	-
A32	B64_L2_N	AB26	B32	B64_L10_N	AB22
A33	B64_L2_P	AB25	B33	B64_L10_P	AA22
A34	GND	-	B34	GND	-
A35	B64_T3U	AC16	B35	B64_L20_N	AB19
A36	B65_T1U	AA23	B36	B64_L20_P	AA19
A37	GND	-	B37	GND	-
A38	B65_L6_N	W20	B38	B65_L9_N	AA25
A39	B65_L6_P	W19	B39	B65_L9_P	AA24
A40	GND	-	B40	GND	-
A41	B65_L1_N	V19	B41	B65_L8_N	Y26
A42	B65_L1_P	U19	B42	B65_L8_P	Y25
A43	GND	-	B43	GND	-
A44	B65_L3_N	U20	B44	B65_L5_N	T23
A45	B65_L3_P	T20	B45	B65_L5_P	T22
A46	GND	-	B46	GND	-
A47	B66_L4_N	L19	B47	B65_L19_N	R23
A48	B66_L4_P	M19	B48	B65_L19_P	R22
A49	GND	-	B49	GND	-
A50	B66_L2_N	M21	B50	B65_L16_N	V26
A51	B66_L2_P	M20	B51	B65_L16_P	U26
A52	GND	-	B52	GND	-
A53	B66_L5_N	J21	B53	B65_T3U	T19
A54	B66_L5_P	K21	B54	-	-
A55	GND	-	B55	GND	-
A56	B66_L3_N	J20	B56	B65_L17_N	P26
A57	B66_L3_P	J19	B57	B65_L17_P	P25
A58	GND	-	B58	GND	-
A59	B66_L1_N	K18	B59	B65_L15_N	P24
A60	B66_L1_P	L18	B60	B65_L15_P	N24

J2 管	信号名称	FPGA 引	J2 管脚	信号名称	FPGA 引脚号
脚		脚号			
C1	+12V	-	D1	+12V	-
C2	-	-	D2	-	-
C3	GND	-	D3	GND	-
C4	VCCAUX_PG	-	D4	FMC_HPC0_VREF_A_M2C	W18, V18
C5	-	-	D5	-	-
C6	GND	-	D6	GND	-
C 7	GND	-	D7	GND	-
C8	B84_L11_N	AA13	D8	B84_L12_N	W13
С9	B84_L11_P	Y13	D9	B84_L12_P	W12
C10	GND	-	D10	GND	-
C11	B84_L3_N	AE15	D11	B84_L10_N	W15
C12	B84_L3_P	AD15	D12	B84_L10_P	W14
C13	GND	-	D13	GND	-
C14	B84_L4_N	AD14	D14	B84_L8_N	AB14
C15	B84_L4_P	AD13	D15	B84_L8_P	AA14
C16	GND	-	D16	GND	-
C17	B64_L17_N	AF17	D17	B84_L7_N	AA15
C18	B64_L17_P	AE17	D18	B84_L7_P	Y15
C19	GND	-	D19	GND	-
C20	B64_L15_N	AF19	D20	B64_L13_N	AE20
C21	B64_L15_P	AF18	D21	B64_L13_P	AD20
C22	GND	-	D22	GND	-
C23	B64_L16_N	AD18	D23	B64_L18_N	AE16
C24	B64_L16_P	AC18	D24	B64_L18_P	AD16
C25	GND	-	D25	GND	-
C26	B64_L14_N	AD19	D26	B64_L22_N	AC17
C27	B64_L14_P	AC19	D27	B64_L22_P	AB17
C28	GND	-	D28	GND	-
C29	B64_L12_N	AC21	D29	B64_L21_N	AB20
C30	B64_L12_P	AB21	D30	B64_L21_P	AA20

C31	GND	-	D31	GND	-
C32	B64_L24_N	AA18	D32	B64_L23_N	AA17
C33	B64_L24_P	Y18	D33	B64_L23_P	Y17
C34	GND	-	D34	GND	-
C35	-	-	D35	B64_L19_N	Y21
C36	-	-	D36	B64_L19_P	Y20
C37	GND	-	D37	GND	-
C38	-	-	D38	USER_DEF_CLOCK_P	J23
C39	-	-	D39	USER_DEF_CLOCK_N	J24
C40	GND	-	D40	GND	-
C41	B65_L10_N	W26	D41	B65_L12_N	W24
C42	B65_L10_P	W25	D42	B65_L12_P	V24
C43	GND	-	D43	GND	-
C44	B65_L11_N	W23	D44	B65_L7_N	Y23
C45	B65_L11_P	V23	D45	B65_L7_P	Y22
C46	GND	-	D46	GND	-
C47	B65_L4_N	V22	D47	B65_L23_N	P19
C48	B65_L4_P	V21	D48	B65_L23_P	N19
C49	GND	-	D49	GND	-
C50	B65_L20_N	P21	D50	B65_L24_N	N22
C51	B65_L20_P	P20	D51	B65_L24_P	N21
C52	GND	-	D52	GND	-
C53	B65_L14_N	U25	D53	B65_L13_N	U24
C54	B65_L14_P	T25	D54	B65_L13_P	T24
C55	GND	-	D55	GND	-
C56	B65_T2U	N26	D56	B65_L18_N	R26
C57	B65_L2_P	U21	D57	B65_L18_P	R25
C58	GND	-	D58	GND	-
C59	-	-	D59	-	-
C60	VCCO_84	AC15,Y24	D60	VCCO_86_87	E9,H10,E14, H25

三、扩展板

(一)简介

通过前面的功能简介,我们可以了解到扩展板部分的功能

- PCle3.0 x8 接口
- 1路干兆网接口
- 1路 FMC HPC 接口
- 1路 MIPI 输入接口
- USB Uart 接口
- Micro SD 卡座
- 40 针扩展口
- JTAG 调试口
- LED灯
- 按键

(二) PCIe 插槽

AXKU3 扩展板上有一个 PCIe x8 的接口,支持 PCIe Gen3.0 协议,8 对收发器连接到 PCIEx8 的金手指上进行数据通信。

PCIe 接口的收发信号直接跟 FPGA BANK224, BANK225 收发器相连接, 8 路 TX 信号和 RX 信号都是以差分信号方式连接到 FPGA 的收发器上,单通道通信速率可高达 8G bit 带宽。

开发板的 PCIe 接口的设计示意图如下图 3-2-1 所示, 其中 TX 发送信号用 AC 耦合模式连接。

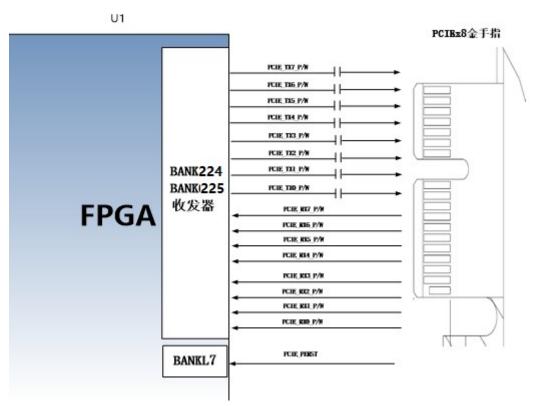


图 3-2-1 PCIe 插槽设计示意图

PCIe x8 接口 FPGA 引脚分配如下:

信号名称	FPGA 引脚名	引脚号	备注
PCIE_RX0_P	MGT225_RX3_P	P2	PCIE 通道 0 数据接收正
PCIE_RX0_N	MGT225_RX3_N	P1	PCIE 通道 0 数据接收负
PCIE_RX1_P	MGT225_RX2_P	T2	PCIE 通道 1 数据接收正
PCIE_RX1_N	MGT225_RX2_N	T1	PCIE 通道 1 数据接收负
PCIE_RX2_P	MGT225_RX1_P	V2	PCIE 通道 2 数据接收正
PCIE_RX2_N	MGT225_RX1_N	V1	PCIE 通道 2 数据接收负
PCIE_RX3_P	MGT225_RX0_P	Y2	PCIE 通道 3 数据接收正
PCIE_RX3_N	MGT225_RX0_N	Y1	PCIE 通道 3 数据接收负
PCIE_RX4_P	MGT224_RX3_P	AB2	PCIE 通道 4 数据接收正
PCIE_RX4_N	MGT224_RX3_N	AB1	PCIE 通道 4 数据接收负
PCIE_RX5_P	MGT224_RX2_P	AD2	PCIE 通道 5 数据接收正
PCIE_RX5_N	MGT224_RX2_N	AD1	PCIE 通道 5 数据接收负
PCIE_RX6_P	MGT224_RX1_P	AE4	PCIE 通道 6 数据接收正
PCIE_RX6_N	MGT224_RX1_N	AE3	PCIE 通道 6 数据接收负

PCIE_RX7_P	MGT224_RX0_P	AF2	PCIE 通道 7 数据接收正
PCIE_RX7_N	MGT224_RX0_N	AF1	PCIE 通道 7 数据接收负
PCIE_TX0_P	MGT225_TX3_P	R5	PCIE 通道 0 数据发送正
PCIE_TX0_N	MGT225_TX3_N	R4	PCIE 通道 0 数据发送负
PCIE_TX1_P	MGT225_TX2_P	U5	PCIE 通道 1 数据发送正
PCIE_TX1_N	MGT225_TX2_N	U4	PCIE 通道 1 数据发送负
PCIE_TX2_P	MGT225_TX1_P	W5	PCIE 通道 2 数据发送正
PCIE_TX2_N	MGT225_TX1_N	W4	PCIE 通道 2 数据发送负
PCIE_TX3_P	MGT225_TX0_P	AA5	PCIE 通道 3 数据发送正
PCIE_TX3_N	MGT225_TX0_N	AA4	PCIE 通道 3 数据发送负
PCIE_TX4_P	MGT224_TX3_P	AC5	PCIE 通道 4 数据发送正
PCIE_TX4_N	MGT224_TX3_N	AC4	PCIE 通道 4 数据发送负
PCIE_TX5_P	MGT224_TX2_P	AD7	PCIE 通道 5 数据发送正
PCIE_TX5_N	MGT224_TX2_N	AD6	PCIE 通道 5 数据发送负
PCIE_TX6_P	MGT224_TX1_P	AE9	PCIE 通道 6 数据发送正
PCIE_TX6_N	MGT224_TX1_N	AE8	PCIE 通道 6 数据发送负
PCIE_TX7_P	MGT224_TX0_P	AF7	PCIE 通道 7 数据发送正
PCIE_TX7_N	MGT224_TX0_N	AF6	PCIE 通道 7 数据发送负
PCIE_CLK_P	MGT225_CLK0_P	V7	PCIE 通道参考时钟正
PCIE_CLK_N	MGT225_CLK0_N	V6	PCIE 通道参考时钟负
FPGA_PCIE_PERST_N	B65_T3U	T19	PCIE 板卡的复位信号

(三)千兆网接口

开发板上通过一片 JL21221D 以太网 PHY 芯片为用户提供网络通信服务。以太网 PHY 芯片是连接到 FPGA 的 IO 接口上。JL21221D 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 FPGA 进行数据通信。JL21221D 芯片支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,支持 MDIO 总线进行 PHY 的寄存器管理。

JL21221D 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。表 3-2-1 描述了 GPHY 芯片上电之后的默认设定信息。

W = 1.1.1. O. T. MAN CHO E. IE.					
配置 Pin 脚	说明	配置值			
RXD3_ADR0	MDIO/MDC 模式的	PHY Address 为 001			
RXC_ADR1	PHY 地址				
RXCTL_ADR2					
RXD1_TXDLY	TX 时钟 2ns 延时	延时			
RXD0_RXDLY	RX 时钟 2ns 延时	延时			

表 3-2-1 PHY 芯片默认配置值

当网络连接到干兆以太网时,FPGA 和 PHY 芯片 JL2121 的数据传输时通过 RGMII 总线通信,传输时钟为 125Mhz,数据在时钟的上升沿和下降样采样。

当网络连接到百兆以太网时, FPGA 和 PHY 芯片 JL2121 的数据传输时通过 RMII 总线通信,传输时钟为 25Mhz。数据在时钟的上升沿和下降样采样。

图 3-3-1 为 FPGA 与以太网 PHY 芯片连接示意图:

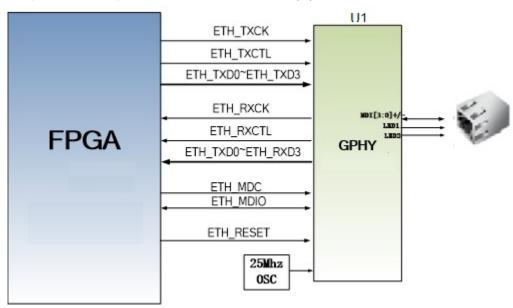


图 3-3-1 千兆网接口连接原理图

图 3-3-2 为以太网 PHY 芯片的实物图

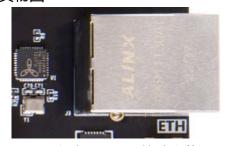


图 3-3-2 以太网 PHY 芯片实物图

以太网 PHY 的 FPGA 引脚分配如下:

信号名称	FPGA 引脚号	备注
ETH_MDC	N26	MDIO 管理时钟
ETH_MDIO	U19	MDIO 管理数据
ETH_RESET	N22	PHY 芯片复位
ETH_RXCK	U21	RGMII 接收时钟
ETH_RXCTL	R23	接收数据有效信号
ETH_RXD0	V19	接收数据 Bit0
ETH_RXD1	P20	接收数据 Bit1
ETH_RXD2	P21	接收数据 Bit2
ETH_RXD3	R22	接收数据 Bit3
ETH_TXCK	R25	RGMII 发送时钟
ETH_TXCTL	R26	发送使能信号
ETH_TXD0	V21	发送数据 bit0
ETH_TXD1	V22	发送数据 bit1
ETH_TXD2	N19	发送数据 bit2
ETH_TXD3	P19	发送数据 bit3

(四) FMCHPC 接口

开发板带有 1 路 FMC HPC 扩展口,可以外接 XILINX 或者我们黑金的各种 FMC 模块 (HDMI 输入输出模块,双目摄像头模块,高速 AD 模块等等)。

FMC HPC 扩展口包含 34 对差分 IO 信号,分别连接 FPGA 芯片 BANK64,BANK65,电平标准默认为 1.8V。8 路高速 GTY 收发信号连接 FPGA 芯片 BANK226,BANK227 的 IO 上。

FPGA 和 FMC HPC 连接器的原理图如图 3-4-1 所示:

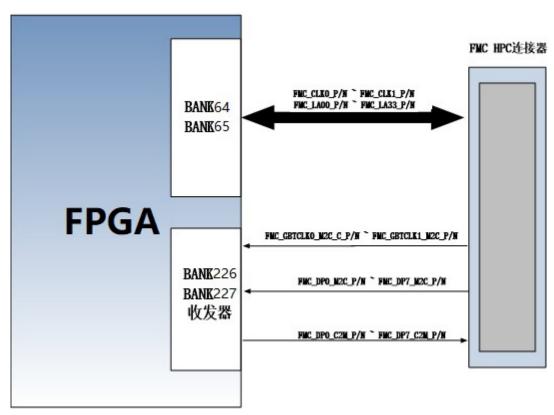


图 3-4-1 HPC FMC 连接示意图

FMC HPC 连接器引脚分配如下:

	<u> </u>		
信号名	FPGA	FPGA	备注
	引脚名	引脚号	
FMC_CLK0_N	B65_L12_N	W24	FMC 第 0 路输入参考时钟 N
FMC_CLK0_P	B65_L12_P	V24	FMC 第 0 路输入参考时钟 P
FMC_CLK1_N	B64_L12_N	AC21	FMC 第 1 路输入参考时钟 N
FMC_CLK1_P	B64_L12_P	AB21	FMC 第 1 路输入参考时钟 P
FMC_LA00_CC_N	B65_L14_N	U25	FMC LA 第 0 路数据 (时钟) N
FMC_LA00_CC_P	B65_L14_P	T25	FMC LA 第 0 路数据 (时钟) P
FMC_LA01_CC_N	B65_L13_N	U24	FMC LA 第 1 路数据 (时钟) N
FMC_LA01_CC_P	B65_L13_P	T24	FMC LA 第 1 路数据 (时钟) P
FMC_LA02_N	B65_L17_N	P26	FMC LA 第 2 路数据 N
FMC_LA02_P	B65_L17_P	P25	FMC LA 第 2 路数据 P
FMC_LA03_N	B65_L5_N	T23	FMC LA 第 3 路数据 N
FMC_LA03_P	B65_L5_P	T22	FMC LA 第 3 路数据 P
FMC_LA04_N	B65_L16_N	V26	FMC LA 第 4 路数据 N
FMC_LA04_P	B65_L16_P	U26	FMC LA 第 4 路数据 P

FMC_LA05_N	B64_L24_N	AA18	FMC LA 第 5 路数据 N
FMC_LA05_P	B64_L24_P	Y18	FMC LA 第 5 路数据 P
FMC_LA06_N	B65_L10_N	W26	FMC LA 第 6 路数据 P
FMC_LA06_P	B65_L10_P	W25	FMC LA 第 6 路数据 P
FMC_LA07_N	B65_L9_N	AA25	FMC LA 第 7 路数据 N
FMC_LA07_P	B65_L9_P	AA24	FMC LA 第 7 路数据 P
FMC_LA08_N	B65_L11_N	W23	FMC LA 第 8 路数据 N
FMC_LA08_P	B65_L11_P	V23	FMC LA 第 8 路数据 P
FMC_LA09_N	B65_L8_N	Y26	FMC LA 第 9 路数据 N
FMC_LA09_P	B65_L8_P	Y25	FMC LA 第 9 路数据 P
FMC_LA10_N	B65_L15_N	P24	FMC LA 第 10 路数据 N
FMC_LA10_P	B65_L15_P	N24	FMC LA 第 10 路数据 P
FMC_LA11_N	B64_L10_N	AB22	FMC LA 第 11 路数据 N
FMC_LA11_P	B64_L10_P	AA22	FMC LA 第 11 路数据 P
FMC_LA12_N	B65_L7_N	Y23	FMC LA 第 12 路数据 N
FMC_LA12_P	B65_L7_P	Y22	FMC LA 第 12 路数据 P
FMC_LA13_N	B64_L9_N	AC23	FMC LA 第 13 路数据 N
FMC_LA13_P	B64_L9_P	AC22	FMC LA 第 13 路数据 P
FMC_LA14_N	B64_L7_N	AF22	FMC LA 第 14 路数据 N
FMC_LA14_P	B64_L7_P	AE22	FMC LA 第 14 路数据 P
FMC_LA15_N	B64_L11_N	AE21	FMC LA 第 15 路数据 N
FMC_LA15_P	B64_L11_P	AD21	FMC LA 第 15 路数据 P
FMC_LA16_N	B64_L8_N	AE23	FMC LA 第 16 路数据 N
FMC_LA16_P	B64_L8_P	AD23	FMC LA 第 16 路数据 P
FMC_LA17_CC_N	B64_L14_N	AD19	FMC LA 第 17 路数据 (时钟) N
FMC_LA17_CC_P	B64_L14_P	AC19	FMC LA 第 17 路数据 (时钟) P
FMC_LA18_CC_N	B64_L13_N	AE20	FMC LA 第 18 路数据 (时钟) N
FMC_LA18_CC_P	B64_L13_P	AD20	FMC LA 第 18 路数据 (时钟) P
FMC_LA19_N	B64_L18_N	AE16	FMC LA 第 19 路数据 N
FMC_LA19_P	B64_L18_P	AD16	FMC LA 第 19 路数据 P
FMC_LA20_N	B64_L16_N	AD18	FMC LA 第 20 路数据 N
FMC_LA20_P	B64_L16_P	AC18	FMC LA 第 20 路数据 P
FMC_LA21_N	B64_L20_N	AB19	FMC LA 第 21 路数据 N
FMC_LA21_P	B64_L20_P	AA19	FMC LA 第 21 路数据 P
FMC_LA22_N	B64_L21_N	AB20	FMC LA 第 22 路数据 N

FMC_LA22_P	B64_L21_P	AA20	FMC LA 第 22 路数据 P
FMC_LA23_N	B64_L23_N	AA17	FMC LA 第 23 路数据 N
FMC_LA23_P	B64_L23_P	Y17	FMC LA 第 23 路数据 P
FMC_LA24_N	B64_L15_N	AF19	FMC LA 第 24 路数据 N
FMC_LA24_P	B64_L15_P	AF18	FMC LA 第 24 路数据 P
FMC_LA25_N	B64_L6_N	AC24	FMC LA 第 25 路数据 N
FMC_LA25_P	B64_L6_P	AB24	FMC LA 第 25 路数据 P
FMC_LA26_N	B64_L19_N	Y21	FMC LA 第 26 路数据 N
FMC_LA26_P	B64_L19_P	Y20	FMC LA 第 26 路数据 P
FMC_LA27_N	B64_L22_N	AC17	FMC LA 第 27 路数据 N
FMC_LA27_P	B64_L22_P	AB17	FMC LA 第 27 路数据 P
FMC_LA28_N	B64_L17_N	AF17	FMC LA 第 28 路数据 N
FMC_LA28_P	B64_L17_P	AE17	FMC LA 第 28 路数据 P
FMC_LA29_N	B64_L1_N	AE26	FMC LA 第 29 路数据 N
FMC_LA29_P	B64_L1_P	AE25	FMC LA 第 29 路数据 P
FMC_LA30_N	B64_L5_N	AD25	FMC LA 第 30 路数据 N
FMC_LA30_P	B64_L5_P	AD24	FMC LA 第 30 路数据 P
FMC_LA31_N	B64_L2_N	AB26	FMC LA 第 31 路数据 N
FMC_LA31_P	B64_L2_P	AB25	FMC LA 第 31 路数据 P
FMC_LA32_N	B64_L4_N	AD26	FMC LA 第 32 路数据 N
FMC_LA32_P	B64_L4_P	AC26	FMC LA 第 32 路数据 P
FMC_LA33_N	B64_L3_N	AF25	FMC LA 第 33 路数据 N
FMC_LA33_P	B64_L3_P	AF24	FMC LA 第 33 路数据 P
FMC_SCL	B84_L6_P	AB15	FMC I2C 总线时钟
FMC_SDA	B84_L6_N	AB16	FMC I2C 总线数据
FMC_HPC_GBTCLK0_M2C_C_N	MGT226_CLK1_N	M6	收发器参考时钟 0 输入 P
FMC_HPC_GBTCLK0_M2C_C_P	MGT226_CLK1_P	M7	收发器参考时钟 0 输入 N
FMC_HPC_GBTCLK1_M2C_C_N	MGT227_CLK1_N	Н6	收发器参考时钟 1 输入 P
FMC_HPC_GBTCLK1_M2C_C_P	MGT227_CLK1_P	H7	收发器参考时钟 1 输入 N
FMC_DP0_M2C_P	MGT226_RX0_P	M2	收发器数据 0 输入 P
FMC_DP0_M2C_N	MGT226_RX0_N	M1	收发器数据 0 输入 N
FMC_DP1_M2C_P	MGT226_RX1_P	K2	收发器数据 1 输入 P
FMC_DP1_M2C_N	MGT226_RX1_N	K1	收发器数据 1 输入 N
FMC_DP2_M2C_P	MGT226_RX2_P	H2	收发器数据 2 输入 P
FMC_DP2_M2C_N	MGT226_RX2_N	H1	收发器数据 2 输入 N

FMC_DP3_M2C_P	MGT226_RX3_P	F2	收发器数据 3 输入 P
FMC_DP3_M2C_N	MGT226_RX3_N	F1	收发器数据 3 输入 N
FMC_DP4_M2C_P	MGT227_RX0_P	D2	收发器数据 4 输入 P
FMC_DP4_M2C_N	MGT227_RX0_N	D1	收发器数据 4 输入 N
FMC_DP5_M2C_P	MGT227_RX1_P	C4	收发器数据 5 输入 P
FMC_DP5_M2C_N	MGT227_RX1_N	C3	收发器数据 5 输入 N
FMC_DP6_M2C_P	MGT227_RX3_P	A4	收发器数据 6 输入 P
FMC_DP6_M2C_N	MGT227_RX3_N	A 3	收发器数据 6 输入 N
FMC_DP7_M2C_P	MGT227_RX2_P	B2	收发器数据 7 输入 P
FMC_DP7_M2C_N	MGT227_RX2_N	B1	收发器数据 7 输入 N
FMC_DP0_C2M_P	MGT226_TX0_P	N5	收发器数据 0 输出 P
FMC_DP0_C2M_N	MGT226_TX0_N	N4	收发器数据 0 输出 N
FMC_DP1_C2M_P	MGT226_TX1_P	L5	收发器数据 1 输出 P
FMC_DP1_C2M_N	MGT226_TX1_N	L4	收发器数据 1 输出 N
FMC_DP2_C2M_P	MGT226_TX2_P	J5	收发器数据 2 输出 P
FMC_DP2_C2M_N	MGT226_TX2_N	J4	收发器数据 2 输出 N
FMC_DP3_C2M_P	MGT226_TX3_P	G5	收发器数据 3 输出 P
FMC_DP3_C2M_N	MGT226_TX3_N	G4	收发器数据 3 输出 N
FMC_DP4_C2M_P	MGT227_TX0_P	F7	收发器数据 4 输出 P
FMC_DP4_C2M_N	MGT227_TX0_N	F6	收发器数据 4 输出 N
FMC_DP5_C2M_P	MGT227_TX1_P	E5	收发器数据 5 输出 P
FMC_DP5_C2M_N	MGT227_TX1_N	E4	收发器数据 5 输出 N
FMC_DP6_C2M_P	MGT227_TX3_P	В7	收发器数据 6 输出 P
FMC_DP6_C2M_N	MGT227_TX3_N	В6	收发器数据 6 输出 N
FMC_DP7_C2M_P	MGT227_TX2_P	D7	收发器数据 7 输出 P
FMC_DP7_C2M_N	MGT227_TX2_N	D6	收发器数据 7 输出 N

(五) MIPI 接口

AXKU3 扩展板上带有 1 路 MIPI lanex4 摄像头输入接口,与 FPGA 的 BANK66 和 BANK84 相连, 连接的设计示意图如下图 3-5-1 所示:

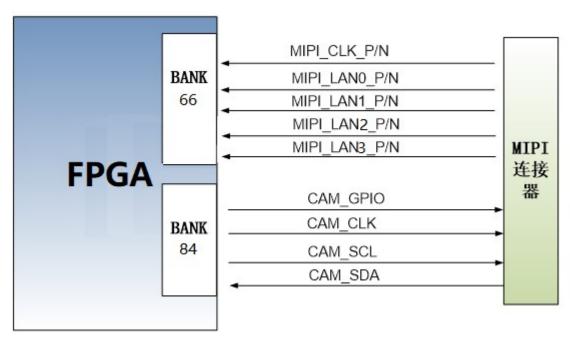
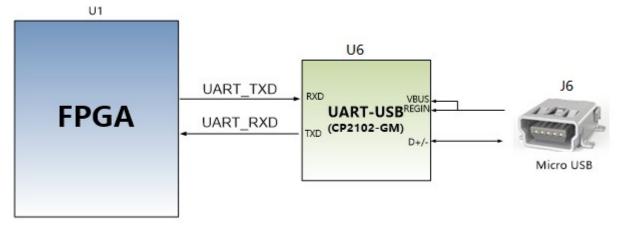


图 3-5-1 MIPI 接口设计原理图

MIPI 接口引脚分配


信号名称	FPGA 引脚名	引脚 号	备注	
MIPI_CLK_P	B66_L1_P	L18	MIPI 输入时钟正	
MIPI_CLK_N	B66_L1_N	K18	MIPI 输入时钟负	
MIPI_LAN0_P	B66_L5_P	K21	MIPI 输入的数据 LANE0 正	
MIPI_LAN0_N	B66_L5_N	J21	MIPI 输入的数据 LANE0 负	
MIPI_LAN1_P	B66_L2_P	M20	MIPI 输入的数据 LANE1 正	
MIPI_LAN1_N	B66_L2_N	M21	MIPI 输入的数据 LANE1 负	
MIPI_LAN2_P	B66_L3_P	J19	MIPI 输入的数据 LANE2 正	
MIPI_LAN2_N	B66_L3_N	J20	MIPI 输入的数据 LANE2 负	
MIPI_LAN3_P	B66_L4_P	M19	MIPI 输入的数据 LANE3 正	
MIPI_LAN3_N	B66_L4_N	L19	MIPI 输入的数据 LANE3 负	
MIPI_CLK	B84_L10_P	W14	摄像头的时钟输入	
MIPI_GPIO	B84_L10_N	W15	摄像头的 GPIO 控制	
MIPI_I2C_SCL	B84_L8_N	AB14	摄像头的 I2C 时钟	
MIPI_I2C_SDA	B84_L8_P	AA14	摄像头的 I2C 数据	

(六) USB 转串口

AXKU3 扩展板上配备了一个 Uart 转 USB 接口,用于系统调试。转换芯片采用 Silicon Labs CP2102GM 的 USB-UART 芯片, USB 接口采用 MINI USB 接口,可以用一根 USB 线将它连接到上 PC 的 USB 口进行核心板的单独供电和串口数据通信 。

USB Uart 电路设计的示意图如下图所示:

3-6-1 USB 转串口示意图

USB 转串口的 FPGA 引脚分配:

信号名称	FPGA 引脚名	引脚 号	备注
UART_RXD	B84_L3_N	AE15	Uart 数据输入
UART_TXD	B84_L3_P	AD15	Uart 数据输出

(七)SD 卡槽

AXKU3 底板包含了一个 Micro 型的 SD 卡接口,以提供用户访问 SD 卡存储器,用于用户数据文件。SDIO 信号与 FPGA 的 IO 信号相连,支持 SPI 模式和 SD 模式,使用的 SD 卡为 MicroSD 卡。FPGA 和 SD 卡连接器的原理图如下图 3-7-1 所示。

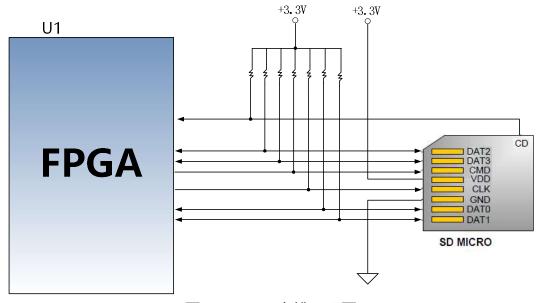


图 3-7-1 SD 卡槽原理图

SD 卡槽引脚分配

信号名称	FPGA 引脚名	引脚号	备注
SD_CD	B84_L4_N	AD14	SD 片选信号
SD_CLK	B84_L11_P	Y13	SD 时钟信号
SD_CMD	B84_L11_N	AA13	SD 命令信号
SD_D0	B84_L12_N	W13	SD 数据 Data0
SD_D1	B84_L12_P	W12	SD 数据 Data1
SD_D2	B84_L1_N	AF15	SD 数据 Data2
SD_D3	B84_L1_P	AF14	SD 数据 Data3

(八) 40 针扩展口

底板预留了 1 个 2.54mm 标准间距的 40 针的扩展口 J8,用于连接黑金的各个模块或者用户自己设计的外面电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3路,IO口 34 路。扩展口的 IO连接的 FPGA的 IO上,默认为 3.3V。

J8 扩展口 FPGA 的引脚分配如下:

J8 管脚	信号名称	引脚号	J8 管脚	信号名称	引脚号
1	GND	-	2	+5V	-
3	IO1_1N	A10	4	IO1_1P	B10

5	IO1_2N	B11	6	IO1_2P	C11
7	IO1_3N	E10	8	IO1_3P	E11
9	IO1_4N	A9	10	IO1_4P	В9
11	IO1_5N	D10	12	IO1_5P	D11
13	IO1_6N	C9	14	IO1_6P	D9
15	IO1_7N	F9	16	IO1_7P	F10
17	IO1_8N	G9	18	IO1_8P	G10
19	IO1_9N	Н9	20	IO1_9P	J9
21	IO1_10N	J10	22	IO1_10P	J11
23	IO1_11N	G11	24	IO1_11P	H11
25	IO1_12N	К9	26	IO1_12P	K10
27	IO1_13N	B12	28	IO1_13P	C12
29	IO1_14N	E12	30	IO1_14P	E13
31	IO1_15N	F12	32	IO1_15P	G12
33	IO1_16N	A12	34	IO1_16P	A13
35	IO1_17N	D13	36	IO1_17P	D14
37	GND	-	38	GND	-
39	+3.3V	-	40	+3.3V	-

(九)时钟配置

AXKU3 底板上有 2 路差分有源时钟 G2 和 G3。频率分别为 156.25MHz 和 125MHz。为 FPGA 的高速收发器提供参考时钟。时钟电路示意图如下图 3-9-1 所示:

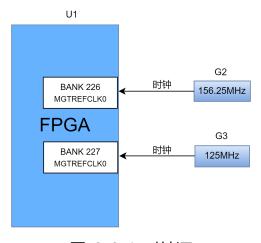


图 3-9-1 时钟源

板上时钟电路设计如图 3-9-2 所示:

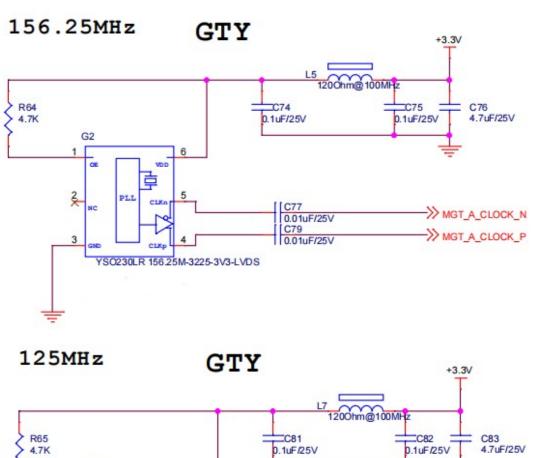


图 3-9-2 系统时钟源

时钟引脚分配:

信号名称	FPGA 引脚
MGT_A_CLOCK_P	P7
MGT_A_CLOCK_N	P6

MGT_B_CLOCK_P	K7
MGT_B_CLOCK_N	K6

(+) EEPROM

AXKU3开发板板载了一片EEPROM,型号为24LC04,容量为:4Kbit (2*256*8bit),由2个256byte的block组成,通过IIC总线进行通信。板载EEPROM就是为了学习IIC总线的通信方式。EEPROM的I2C信号连接的FPGA端的BANK B1 IO口上。下图3-10-1为EEPROM的设计示意图

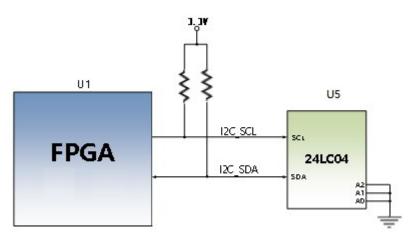


图3-10-1 EEPROM原理图部分

EEPROM引脚分配:

引脚名称	FPGA引脚
EEPROM_I2C_SCL	AB14
EEPROM_I2C_SDA	AA14

(十一) 温度传感器

AXKU3开发板上安装了一个高精度、低功耗、数字温度传感器芯片,型号为ON Semiconductor公司的LM75A。LM75A芯片的温度精度为0.125度,传感器和FPGA直接为I2C 数字接口, FPGA通过I2C接口来读取当前开发板附近的温度。下图3-11-1为LM75A传感器芯片的设计示意图

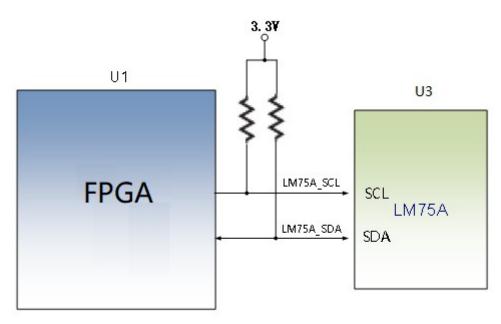


图3-11-1 LM75A传感器原理图部分

LM75A传感器引脚分配:

引脚名称	FPGA引脚
LM75A_SCL	Y15
LM75A_SDA	AA15

(十二) 按键和 LED 灯

AXKU3 底板上有 7 个发光二极管 LED, 1 个电源指示灯; 2 个串口通信指示灯, 4 个用户 LED 灯。当开发板上电后电源指示灯会亮起; 4 个 LED 灯连接到 FPGA 的 IO 上, 用户可以通过程序来控制亮和灭, 当连接用户 LED 灯的 IO 电压为高时, 用户 LED 灯点亮, 当连接 IO 电压为低时, 用户 LED 会被熄灭。另外板上还有 4 个用户按键, 默认按键信号为高, 当按键按下时, 按键电平为低。用户 LED 灯和按键的硬件连接示意图如图 3-12-1 所示:

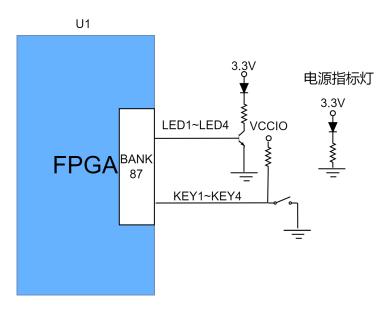


图 3-12-1 用户 LED 灯和按键硬件连接示意图

用户 LED 灯和按键的引脚分配

信号名称	FPGA 引脚名	管脚号	备注
KEY1	B87_L4_N	J14	用户按键 1
KEY2	B87_L4_P	J15	用户按键 2
KEY3	B87_L2_P	J13	用户按键 3
KEY4	B87_L2_N	H13	用户按键 4
LED1	B87_L1_P	J12	用户 LED1 灯
LED2	B87_L3_P	H14	用户 LED2 灯
LED3	B87_L6_N	F13	用户 LED3 灯
LED4	B87_L1_N	H12	用户 LED4 灯

(十三) JTAG 调试口

在 AXKU3 底板上预留了一个 10PIN 的 JTAG 接口,用于下载 FPGA 程序或者固化程序 到 FLASH。为了带电插拔造成对 FPGA 芯片的损坏,我们在 JTAG 信号上添加了保护二极管来保证信号的电压在 FPGA 接受的范围,避免芯片的损坏。

JTAG Connector

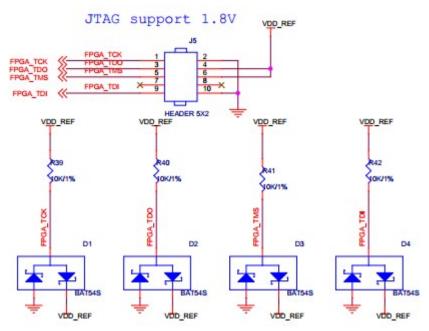


图3-13-1 原理图中JTAG接口部分

(十四) 电源

开发板的电源输入电压为 DC12V,可以通过 PCIE 插槽或者外接+12V 电源给板子供电。外接电源供电时请使用开发板自带的电源,不要用其他规格的电源,以免损坏开发板。底板上外部输入电源通过 1 路电压保护芯片输出,DC/DC 电源芯片 ETA8156、ETA1471 和 SGM61163 分别转换成+5V, +V_ADJ 和+3.3V 三路电源。同时输出的+3.3V 给多路 LDO输出 JTAG 各 FPGABANK 所需的电压。

板上的电源设计示意图如下图 3-14-1 所示:

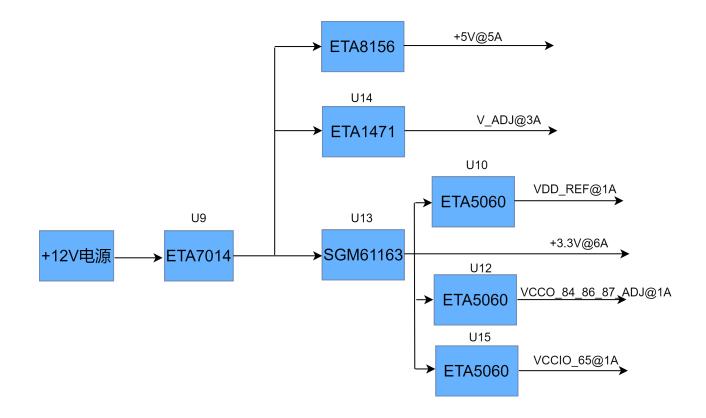


图 3-14-1 原理图中电源接口部分

各个电源分配的功能如下表所示:

电源	功能	
+5.0V	扩展模块供电电源	
V_ADJ	FPGA BANK 电压	
+3.3V	底板外设电源	
VDD_REF	JTAG 电源	
VCCIO_65	FPGA BANK 电压	
VCCO_84_86_87_ADJ	FPGA BANK 电压	

(十五) 结构尺寸图

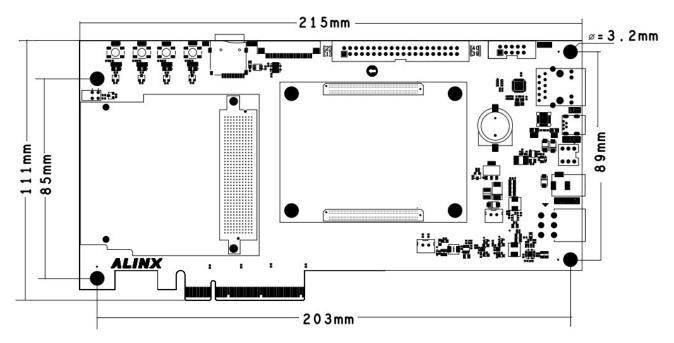


图 3-15-1 正面图 (Top View)